Вариант № 59958

При выполнении заданий с кратким ответом впишите в поле для ответа цифру, которая соответствует номеру правильного ответа, или число, слово, последовательность букв (слов) или цифр. Ответ следует записывать без пробелов и каких-либо дополнительных символов. Дробную часть отделяйте от целой десятичной запятой. Единицы измерений писать не нужно.


Если вариант задан учителем, вы можете вписать или загрузить в систему ответы к заданиям с развернутым ответом. Учитель увидит результаты выполнения заданий с кратким ответом и сможет оценить загруженные ответы к заданиям с развернутым ответом. Выставленные учителем баллы отобразятся в вашей статистике.


Версия для печати и копирования в MS Word
Время
Прошло 0:00:00
Осталось 3:30:00
1
Задание № 399
i

Зна­че­ние вы­ра­же­ния 2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка умно­жить на левая круг­лая скоб­ка 2 в сте­пе­ни левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка пра­вая круг­лая скоб­ка в сте­пе­ни левая круг­лая скоб­ка минус 2 пра­вая круг­лая скоб­ка равно:



2
Задание № 427
i

Ре­ши­те не­ра­вен­ство | минус x|\geqslant6.



3
Задание № 1089
i

Вы­ра­зи­те 528 см 6 мм в мет­рах с точ­но­стью до сотых.



4
Задание № 1154
i

На ко­ор­ди­нат­ной пря­мой от­ме­че­ны точки А, В, С, D, E. Если рас­сто­я­ние между E и С равно  дробь: чис­ли­тель: 2, зна­ме­на­тель: 5 конец дроби , то ближе дру­гих к точке с ко­ор­ди­на­той 1,01 рас­по­ло­же­на точка:



5
Задание № 192
i

Све­жие фрук­ты при сушке те­ря­ют a % своей массы. Ука­жи­те вы­ра­же­ние, опре­де­ля­ю­щее массу сухих фрук­тов (в ки­ло­грам­мах), по­лу­чен­ных из 20 кг све­жих.



6
Задание № 193
i

Объем ко­ну­са равен 5, а его вы­со­та равна  дробь: чис­ли­тель: 1, зна­ме­на­тель: 2 конец дроби . Най­ди­те пло­щадь ос­но­ва­ния ко­ну­са.



7
Задание № 613
i

Най­ди­те длину сред­ней линии пря­мо­уголь­ной тра­пе­ции с ост­рым углом 60°, у ко­то­рой боль­шая бо­ко­вая сто­ро­на и боль­шее ос­но­ва­ние равны 6.



8
Задание № 1942
i

Ис­поль­зуя ри­су­нок, опре­де­ли­те вер­ное утвер­жде­ние и ука­жи­те его номер.



9
Задание № 942
i

Длины всех сто­рон тре­уголь­ни­ка яв­ля­ют­ся це­лы­ми чис­ла­ми. Если длина одной сто­ро­ны равна 1, а дру­гой  — 8, то пе­ри­метр тре­уголь­ни­ка равен:



10
Задание № 1007
i

Гра­фик функ­ции, за­дан­ной фор­му­лой y  =  kx + b, сим­мет­ри­чен от­но­си­тель­но на­ча­ла ко­ор­ди­нат и про­хо­дит через точку A (2; 6). Зна­че­ние вы­ра­же­ния k + b равно:



11
Задание № 681
i

В окруж­ность ра­ди­у­сом 12 впи­сан тре­уголь­ник, длины двух сто­рон ко­то­ро­го равны 8 и 12. Най­ди­те длину вы­со­ты тре­уголь­ни­ка, про­ве­ден­ной к его тре­тьей сто­ро­не.


Ответ:

12
Задание № 739
i

Най­ди­те сумму целых ре­ше­ний (ре­ше­ние, если оно един­ствен­ное) си­сте­мы не­ра­венств  си­сте­ма вы­ра­же­ний 3x плюс 4 боль­ше или равно x в квад­ра­те , левая круг­лая скоб­ка x минус 3 пра­вая круг­лая скоб­ка в квад­ра­те боль­ше 0. конец си­сте­мы .


Ответ:

13

Най­ди­те сумму наи­мень­ше­го и наи­боль­ше­го целых ре­ше­ний не­ра­вен­ства  ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x плюс 54 пра­вая круг­лая скоб­ка мень­ше или равно 2 ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 0,3 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 2 пра­вая круг­лая скоб­ка .


Ответ:

14

Для на­ча­ла каж­до­го из пред­ло­же­ний под­бе­ри­те его окон­ча­ние 1-5 так, чтобы по­лу­чи­лось вер­ное утвер­жде­ние.

На­ча­ло

A)  Зна­че­ние вы­ра­же­ния 2 в сте­пе­ни левая круг­лая скоб­ка минус 8 пра­вая круг­лая скоб­ка :2 в сте­пе­ни 0 равно:

Б)  Зна­че­ние вы­ра­же­ния  минус 2 в сте­пе­ни левая круг­лая скоб­ка минус 11 пра­вая круг­лая скоб­ка умно­жить на 8 равно:

В)  Зна­че­ние вы­ра­же­ния 20 в сте­пе­ни 4 : левая круг­лая скоб­ка минус 5 пра­вая круг­лая скоб­ка в сте­пе­ни 4 равно:

Окон­ча­ние

1)  256

2)  −256

3)   минус дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

4)   дробь: чис­ли­тель: 1, зна­ме­на­тель: 256 конец дроби

5)  32

Ответ за­пи­ши­те в виде со­че­та­ния букв и цифр, со­блю­дая ал­фа­вит­ную по­сле­до­ва­тель­ность букв ле­во­го столб­ца. Пом­ни­те, что не­ко­то­рые дан­ные пра­во­го столб­ца могут ис­поль­зо­вать­ся не­сколь­ко раз или не ис­поль­зо­вать­ся во­об­ще. На­при­мер: А1Б1В4.


Ответ:

15
Задание № 382
i

Най­ди­те сумму целых ре­ше­ний не­ра­вен­ства 6 в сте­пе­ни левая круг­лая скоб­ка 3x плюс 1 пра­вая круг­лая скоб­ка минус 7 умно­жить на 36 в сте­пе­ни x плюс 6 в сте­пе­ни x \leqslant0.


Ответ:

16
Задание № 656
i

Най­ди­те сумму кор­ней урав­не­ния

| левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка x минус 10 пра­вая круг­лая скоб­ка | умно­жить на левая круг­лая скоб­ка |x минус 2| плюс |x минус 12| плюс |x минус 7| пра­вая круг­лая скоб­ка =11 левая круг­лая скоб­ка x минус 5 пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 10 минус x пра­вая круг­лая скоб­ка .


Ответ:

17
Задание № 1811
i

Вы­бе­ри­те три вер­ных утвер­жде­ния:

 

1)  если  ко­си­нус альфа = минус ко­си­нус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби , то  арк­ко­си­нус левая круг­лая скоб­ка ко­си­нус альфа пра­вая круг­лая скоб­ка = минус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби ;

2)  если  арк­ко­си­нус a= дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби , то a= ко­си­нус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби ;

3)  если  синус альфа = синус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби ;

4)  если  синус альфа = синус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 9 конец дроби , то  арк­си­нус левая круг­лая скоб­ка синус альфа пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 9 конец дроби ;

5)  если  синус альфа = синус дробь: чис­ли­тель: 2 Пи , зна­ме­на­тель: 9 конец дроби , то  альфа = минус дробь: чис­ли­тель: 7 Пи , зна­ме­на­тель: 9 конец дроби ;

6)  если  ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус a пра­вая круг­лая скоб­ка = ко­си­нус левая круг­лая скоб­ка арк­ко­си­нус дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби пра­вая круг­лая скоб­ка , то a= дробь: чис­ли­тель: 2, зна­ме­на­тель: 9 конец дроби .

 

Ответ за­пи­ши­те циф­ра­ми (по­ря­док за­пи­си цифр не имеет зна­че­ния). На­при­мер: 123.


Ответ:

18
Задание № 1083
i

Най­ди­те уве­ли­чен­ное в 16 раз про­из­ве­де­ние абс­цисс точек пе­ре­се­че­ния пря­мой y  =  6 и гра­фи­ка не­чет­ной функ­ции, ко­то­рая опре­де­ле­на на мно­же­стве  левая круг­лая скоб­ка минус бес­ко­неч­ность ;0 пра­вая круг­лая скоб­ка \cup левая круг­лая скоб­ка 0; плюс бес­ко­неч­ность пра­вая круг­лая скоб­ка и при x > 0 за­да­ет­ся фор­му­лой y=2 в сте­пе­ни левая круг­лая скоб­ка 4x минус 7 пра­вая круг­лая скоб­ка минус 10.


Ответ:

19
Задание № 1109
i

Най­ди­те про­из­ве­де­ние кор­ней (ко­рень, если он един­ствен­ный) урав­не­ния x в квад­ра­те минус 5x минус 14=4 ко­рень из: на­ча­ло ар­гу­мен­та: x в квад­ра­те минус 5x плюс 7 конец ар­гу­мен­та .


Ответ:

20
Задание № 2118
i

Гра­дус­ная мера угла ABC равна 112°. Внут­ри угла ABC про­ве­ден луч BD, ко­то­рый делит дан­ный угол в от­но­ше­нии 1 : 7 (cм. рис.). Най­ди­те гра­дус­ную меру угла 1, если BO  — бис­сек­три­са угла DBC.


Ответ:

21
Задание № 237
i

Най­ди­те ко­ли­че­ство кор­ней урав­не­ния  синус x= дробь: чис­ли­тель: минус x, зна­ме­на­тель: 16 Пи конец дроби .


Ответ:

22
Задание № 507
i

Най­ди­те сумму целых зна­че­ний x, при­над­ле­жа­щих об­ла­сти опре­де­ле­ния функ­ции

y= ло­га­рифм по ос­но­ва­нию левая круг­лая скоб­ка 3 минус x пра­вая круг­лая скоб­ка левая круг­лая скоб­ка 24 минус 2x минус x в квад­ра­те пра­вая круг­лая скоб­ка .


Ответ:

23
Задание № 1707
i

В че­ты­рех­уголь­ни­ке ABCD, впи­сан­ном в окруж­ность, BC=CD=10 ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та и длины сто­рон AB и AD равны ра­ди­у­су этой окруж­но­сти. Най­ди­те зна­че­ние вы­ра­же­ния S2, где S  — пло­щадь че­ты­рех­уголь­ни­ка ABCD.


Ответ:

24
Задание № 779
i

Най­ди­те зна­че­ние вы­ра­же­ния  ко­рень из: на­ча­ло ар­гу­мен­та: 3 конец ар­гу­мен­та минус ко­рень из 2 минус ко­рень из 6 минус 6 минус тан­генс 172 гра­ду­сов30'.


Ответ:

25
Задание № 1933
i

При де­ле­нии на­ту­раль­но­го числа b на 25 с остат­ком, от­лич­ным от нуля, не­пол­ное част­ное равно 5. К числу b слева при­пи­са­ли не­ко­то­рое на­ту­раль­ное число а. По­лу­чен­ное на­ту­раль­ное число раз­де­ли­ли на 20 и по­лу­чи­ли 12 в остат­ке. Най­ди­те число b.


Ответ:

26
Задание № 959
i

Точка A дви­жет­ся по пе­ри­мет­ру тре­уголь­ни­ка KMP. Точки K1, M1, P1 лежат на ме­ди­а­нах тре­уголь­ни­ка KMP и делят их в от­но­ше­нии 6 : 1, счи­тая от вер­шин. По пе­ри­мет­ру тре­уголь­ни­ка K1M1P1 дви­жет­ся точка B со ско­ро­стью, в че­ты­ре раза боль­шей, чем ско­рость точки A. Сколь­ко раз точка B обой­дет по пе­ри­мет­ру тре­уголь­ник K1M1P1 за то время, за ко­то­рое точка A пять раз обой­дет по пе­ри­мет­ру тре­уголь­ник KMP?


Ответ:

27
Задание № 2125
i

Най­ди­те зна­че­ние вы­ра­же­ния  ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка дробь: чис­ли­тель: 64, зна­ме­на­тель: b конец дроби пра­вая круг­лая скоб­ка минус ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка 16 a пра­вая круг­лая скоб­ка , если  ло­га­рифм по ос­но­ва­нию 4 левая круг­лая скоб­ка ab пра­вая круг­лая скоб­ка = 24.


Ответ:

28
Задание № 2216
i

Най­ди­те про­из­ве­де­ние точек ми­ни­му­ма функ­ции  f левая круг­лая скоб­ка x пра­вая круг­лая скоб­ка = дробь: чис­ли­тель: x в сте­пе­ни 4 , зна­ме­на­тель: 4 конец дроби плюс x в кубе минус 14 x в квад­ра­те .


Ответ:

29
Задание № 1791
i

Ос­но­ва­ни­ем пи­ра­ми­ды SABCD яв­ля­ет­ся вы­пук­лый че­ты­рех­уголь­ник ABCD, диа­го­на­ли АС и BD ко­то­ро­го пер­пен­ди­ку­ляр­ны и пе­ре­се­ка­ют­ся в точке O, АО  =  9, ОС  =  16, ВО  =  OD  =  12. Вер­ши­на S пи­ра­ми­ды SABCD уда­ле­на на рас­сто­я­ние  дробь: чис­ли­тель: 61, зна­ме­на­тель: 7 конец дроби от каж­дой из пря­мых AB, BC, СD и AD. Через се­ре­ди­ну вы­со­ты пи­ра­ми­ды SABCD па­рал­лель­но ее ос­но­ва­нию про­ве­де­на се­ку­щая плос­кость, ко­то­рая делит пи­ра­ми­ду на две части. Най­ди­те зна­че­ние вы­ра­же­ния 10 · V, где V  — объем боль­шей из ча­стей.


Ответ:

30
Задание № 2132
i

Две сне­го­очи­сти­тель­ные ма­ши­ны, ра­бо­тая од­но­вре­мен­но, очи­сти­ли всю улицу за 24 мин. Если бы по­ло­ви­ну улицы очи­сти­ла пер­вая ма­ши­на, а затем остав­шу­ю­ся часть улицы  — вто­рая ма­ши­на, то вся улица была бы очи­ще­на за 50 мин. За какое время (в ми­ну­тах) вто­рая ма­ши­на, ра­бо­тая одна, очи­сти­ла бы всю улицу, если из­вест­но, что она ра­бо­та­ет мед­лен­нее, чем пер­вая ма­ши­на?


Ответ:
Завершить работу, свериться с ответами, увидеть решения.